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Abstract — Listeners are thought to be capable of perceiving 
multiple voices in music. Adopting a perceptual view of 
musical ‘voice’ that corresponds to the notion of auditory 
stream, a computational model is developed that splits a 
musical score (symbolic musical data) into different voices. 
A single ‘voice’ may consist of more than one synchronous 
notes that are perceived as belonging to the same auditory 
stream; in this sense, the proposed algorithm, may separate 
a given musical work into fewer voices than the maximum 
number of notes in the greatest chord (e.g. a piece consisting 
of four or more concurrent notes may be separated simply 
into melody and accompaniment). This is paramount, not 
only in the study of auditory streaming per se, but also for 
developing MIR systems that enable pattern recognition and 
extraction within musically pertinent ‘voices’ (e.g. melodic 
lines). The algorithm is tested qualitatively and 
quantitatively against a small dataset that acts as 
groundtruth. 

I. INTRODUCTION 
It appears that the term ‘voice’ has different meanings 

for different research fields (traditional musicology, music 
cognition, computational musicology). Recently, there 
have been a number of attempts (e.g. Temperley, 2001; 
Cambouropoulos 2000; Kilian & Hoos 2002; Szeto and 
Wong, 2003; Chew & Wu 2004; Kirlin & Utgoff 2005; 
Madsen and Widmer 2006) to model computationally the 
segregation of polyphonic music into separate voices. 
Much of this research is influenced by empirical studies in 
music perception (e.g. Bregman, 1990; Deutsch, 1999; 
Huron 2001), as well as by more traditional musicological 
concepts such as melody, counterpoint, voice-leading and 
so on.   

Before presenting various aspects of voice separation 
in terms of perception and computational modelling, it is 
important to clarify what is meant by the term ‘voice’. A 
detailed discussion in presented by Cambouropoulos 
(2006). In this paper, a single musical example will be 
given that presents three different meanings of the term 
voice. 

In Figure 1 three musical examples are given that 
share the same harmonic structure. In these examples, we 
can see three different ways in which ‘voice’ may be 
understood:  literally ‘voice’ (human voice or monophonic 

instrument)1, harmonic ‘voice’ relating to harmonic 
content and evolution, and perceptual ‘voice’ relating to 
auditory streaming. In terms of literal voice, the first 
instance (fig.1a) is purely monophonic (one voice), the 
second (fig.1b) consists of two voices, and the third 
(fig.1c) is made up of three voices. In terms of harmonic 
voice, all instances can be analysed as comprising of three 
voices that relate to the implied harmony (progression of 
triadic chords I-IV-V-I). In terms of perceptual voice, each 
instance is perceived as a single auditory stream (e.g., in 
fig.1c a listener does not perceive three independent 
voices but a single unified progression of chords). 

 
Figure 1 Number of voices: in terms of literal voices we have in the 
three examples one, two and three voices respectively; in terms of 

harmonic voices all examples can be understood as comprising of three 
voices (triadic harmony); in terms of perceptual voices/streams each 

example is perceived as a single auditory stream (harmonic 
accompaniment).  

The standard understanding of the term voice is that 
voice is a monophonic sequence of successive non-
overlapping musical tones; a single voice is thought not to 
contain multi-tone sonorities. However, if ‘voice’ is seen 
in the light of auditory streaming then it becomes clear 
that the standard meaning is not sufficient. It is possible 
that a single monophonic sequence may be perceived as 

                                                        
1 The literal meaning of the term ‘voice’ may be broadened, making 
it applicable to music produced by a single ‘polyphonic’ instrument 
(such as the piano, celesta, guitar etc.) in cases where the music 
consists of a relatively fixed number of individual musical lines (e.g. 
3- or 4-part fugues or other 4-part works for keyboard instruments).  
Terms that are synonymous to ‘voice’ in this sense are ‘part’ and 
‘line’ – in the case of polyphonic music the term ‘contrapuntal voice’ 
is often used. This paper is partially funded by a national GSRT PAVET project 
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more than one voices/streams (e.g., pseudopolyphony or 
implied polyphony) or that a passage containing 
concurrent notes may be perceived as a single perceptual 
entity (e.g., homophonic passages as in fig.1c). Auditory 
stream integration/segregation (in music) determines how 
successions of musical events are perceived as belonging 
to coherent sequences and, at the same time, segregated 
from other independent musical sequences.  A number of 
general perceptual principles govern the way musical 
events are grouped together in musical streams (see 
section 3).  

The perceptual view of voice adopted in this study, 
that allows multi-tone simultaneities in a single ‘voice’, is 
the most significant difference of the proposed model to 
the other existing models. In the examples of Figure 1, all 
existing algorithms (see exception regarding Kilian and 
Hoos’s algorithm in the next section), that are based on 
purely monophonic definitions of voice, would find two 
voices in the second example (fig.1b) and three voices in 
the third example (fig.1c). It is clear that such voices are 
not independent voices and do not have a life of their own; 
it makes more musical sense to consider the notes in each 
example as a single coherent whole (a unified harmonic 
sequence). The algorithm proposed in this paper 
determines that in all three examples we have a single 
‘voice’/stream. 

In this paper, initially, a number of recent voice 
separation algorithms are briefly described and their main 
differences to the current proposal are highlighted. Then, 
the fundamental auditory streaming principles that form 
the basis of the proposed model are presented. The 
description of the algorithm follows. Finally, the way the 
algorithm has been evaluated and the results of the 
application of the algorithm on four different musical 
works are presented.  

II. COMPUTATIONAL MODELS OF VOICE 
SEPARATION 

‘Voice’ separation algorithms are very useful in 
computational implementations as they allow pre-
processing of musical data opening thus the way for more 
efficient and higher quality analytic results.  In domains 
such as music information retrieval or automated musical 
analysis, having sophisticated models that can identify 
multiple melodic voices and/or ‘voices’ consisting of 
multi-note sonorities can assist more sophisticated 
processing within the voices (rather than across voices). 
For instance, if one wants to identify musical works that 
contain a certain melodic pattern, this pattern should be 
found not spread across different parts (perceptually 
implausible) neither in voices that are not perceptually 
independent (e.g. internal parts in a homophonic work) 
but within voices that are heard as having a life of their 
own.  

Recently, there have been a number of attempts to 
model computationally the segregation of polyphonic 
music into separate ‘voices’ (e.g. Marsden, 1992; 
Temperley, 2001; Cambouropoulos 2000; Kilian & Hoos 
2002; Szeto and Wong, 2003; Chew & Wu 2004; Kirlin & 
Utgoff 2005; Madsen and Widmer 2006). These models 
differ in many ways but share two fundamental 
assumptions: 

‘Voice’ is taken to mean a monophonic sequence of 
successive non-overlapping musical tones (exception is 

the model by Kilian and Hoos which will be discussed 
further below) 

The underlying perceptual principles that organise 
tones in voices are the principles of temporal and pitch 
proximity (cf. Huron’s Temporal Continuity and Pitch 
Proximity principles). 

In essence, these models attempt to determine a 
minimal number of lines/voices such that each line 
consists of successions of tones that are maximally 
proximal in the temporal and pitch dimensions. A distance 
metric (primarily in regards to pitch and time proximity) is 
established between each pair of tones within a certain 
time window, and then an optimisation process attempts to 
find a solution that minimises the distances within each 
voice keeping the number of voices to a minimum 
(usually equal to the maximum number of notes in the 
largest chord). These models assume that a voice is a 
succession of individual non-overlapping tones (sharing of 
tones between voices or crossing of voices is forbidden or 
discouraged). 

For instance, Temperley (2001) proposes a number of 
preference rules that suggest large leaps (Pitch Proximity 
Rule) and rests (White Square Rule) should be avoided in 
streams, the number of streams should be minimised (New 
Stream Rule), common tones shared between voices 
should be avoided (Collision Rule) and the top voice 
should be minimally fragmented (Top Voice Rule)  – the 
maximum number of voices and weight of each rule is 
user-defined. Cambouropoulos (2000) assumes that tones 
within streams should be maximally proximal in terms of 
pitch and time, that the number of voices should be kept to 
a minimum and that voices should not cross – the 
maximum number of streams is equal to the number of 
notes in the largest chord. Chew and Wu (2004) base their 
algorithm on the assumption that tones in the same voice 
should be contiguous and proximal in pitch, and that 
voice-crossing should be avoided – the maximum number 
of voices is equal to the number of notes in the largest 
chord. Szeto and Wong (2003) model stream segregation 
as a clustering problem based on the assumption that a 
stream is essentially a cluster since it is a group of events 
sharing similar pitch and time attributes (i.e. proximal in 
the temporal and pitch dimensions) – the algorithm 
determines automatically the number of streams/clusters. 
All of these voice separation algorithms assume that a 
voice is a monophonic succession of tones. 

The voice separation model by Kilian and Hoos (2002) 
differs from the above models in that it allows entire 
chords to be assigned to a single voice, i.e. more than one 
synchronous notes may be considered as belonging to one 
stream. The model partitions a piece into slices; each 
contiguous slices contain at least two non-overlapping 
notes. A cost function is calculated by summing penalty 
values for features that promote segregation such as large 
pitch intervals, rests/gaps, and note overlap between 
successive notes, and large pitch intervals and onset 
asynchrony within chords. Within each slice the notes are 
separated into streams by minimising this cost function. 
The user can adjust the penalty values in order to give 
different prominence values to the various segregation 
features leading thus to a different separation of voices. 
The maximum number of voices is user-defined or 
defined automatically by the number of notes in the 
largest chord.  



The aim of the algorithm is to find ‘a range of voice 
separations that can be seen as reasonable solutions in the 
context of different types of score notation’ (Kilian and 
Hoos, 2002, p.39). The pragmatic goal of the algorithm is 
the derivation of reasonable score notation - not 
perceptually meaningful voices. The algorithm is based on 
perceptual principles, but the results are not necessarily 
perceptually valid (e.g., a 4-part homophonic piece may 
be ‘forced’ to split into two musical staves that do not 
correspond to perceptually pertinent streams). The 
algorithm does not discover automatically the number of 
independent musical ‘voices’ in a given excerpt; if the 
user has not manually defined the maximum number of 
voices, the algorithm automatically sets the maximum 
number equal to the maximum number of co-sounding 
notes – in this case the algorithm becomes similar to all 
other algorithms presented above. 

Kilian and Hoos’s model allows multiple synchronous 
or overlapping tones in a single stream based on pitch and 
temporal proximity. However, there are two problems 
with the way this idea is integrated in the model. Firstly, 
simple pitch and temporal proximity are not sufficient for 
perceptually pertinent ‘vertical’ integration. For instance, 
Kilian and Hoos’s model can separate a 4-part fugue into 
two ‘streams’ based on temporal and pitch proximity, but 
these two ‘streams’ are not perceptual streams but rather a 
convenient way to divide notes into two staves. In 
perceptual terms, tones merge when they have ‘same’ 
onsets and durations (see next section); overlapping tones 
with different onsets and durations do not merge (there 
exist, however, special cases where this happens – not 
discussed in this paper). Secondly, synchronous notes that 
are separated by a small pitch interval are not in general 
more likely to be fused than tones further apart. For 
instance, tones an octave apart are strongly fused whereas 
tones a 2nd apart are less likely to be fused (see next 
section). The perceptual factor of tonal fusion is not taken 
into account by the model.  

Kilian and Hoos’s model is pioneering in the sense 
that multi-note sonorities within single voices are allowed; 
their model, however, is apt to give results that are 
erroneous in terms of auditory stream segregation as this 
is not the goal of the algorithm.  

III. PERCEPTUAL PRINCIPLES FOR VOICE 
SEPARATION 

In this section, fundamental principles of perceptual 
organisation of musical sounds into streams will be 
presented that form the basis of the current computational 
model (next section). Huron (2001) provides an excellent 
survey of relevant research and presents a set of 10 
principles that cover all major aspects of stream 
integration/segregation; we will use a number of these 
principles as the starting-point of our exploration. 

Since we have assumed that a voice may contain 
multi-tone sonorities, it is important to distinguish 
between principles that are primarily responsible for 
vertical integration and ones for horizontal integration. 
Below we will look into the way tones are organised 
‘vertically’ and ‘horizontally’ into coherent ‘wholes’ 

A. Vertical Integration 

Bregman (1990) explores in depth processes relating to 
the perceptual integration/segregation of simultaneous 
auditory components. In this paper, we will focus only on 
two aspects of such processes that relate to two principles 
presented by Huron (2001), namely the principles of 
Onset Synchrony and Tonal Fusion.  

Sounds that are coordinated and evolve synchronously 
in time tend to be perceived as components of a single 
auditory event. ‘Concurrent tones are much more apt to be 
interpreted by the auditory system as constituents of a 
single complex sound event when the tones are temporally 
aligned.’ (Huron, 2001, p.39).  Concurrent tones that start, 
evolve and finish together tend to be grouped together into 
a single sonority.  

In practical terms, we could state that notes that start 
concurrently and have same duration tend to be merged 
vertically into a single sonority.2 This principle relates to 
Huron’s Onset Synchrony Principle3 but it differs in a 
number of ways as discussed in Cambouropoulos 2006. 

Synchronous Note Principle: Notes with synchronous 
onsets and same inter-onset intervals IOIs (durations) 
tend to be merged into a single sonority. 

A second important factor for vertical integration of 
tones, relates to the Principle of Tonal Fusion: The fusion 
between synchronous notes is strongest when notes are in 
unison, very strong when separated by an octave, strong 
when separated by a perfect fifth and progressively 
weaker when separated by other intervals.  

Principle of Tonal Fusion: The perceptual 
independence of concurrent tones is weakened when 
they are separated by intervals (in decreasing order: 
unisons, octaves, perfect fifths…) that promote tonal 
fusion (Huron, 2001, p.19).  

This principle suggests that concurrent pitches are 
integrated depending on the degree of tonal fusion implied 
by interval type rather than mere pitch proximity; this 
principle appears to be (at least partially) in conflict with 
the pitch proximity principle that has been adopted for 
vertical integration in the computational model by Kilian 
and Hoos (2002).  

Finally, according to the Pitch Co-modulation 
Principle: ‘The perceptual union of concurrent tones is 
encouraged when pitch motions are positively correlated.’ 
(Huron, 2001, p.31) The strongest manifestation of this 
principle is when notes move in parallel intervals 
(especially in octaves). The Pitch Co-modulation Principle 
can be seen as a special case of the Synchronous Note 
Principle in the sense that the integration of synchronised 
note progressions is reinforced when pitch progressions 
are positively correlated (e.g. moving in parallel octaves, 
fifths etc.). This principle has not yet been incorporated in 
the current version of the algorithm. 

                                                        
2 For simplicity, in this study we consider notes as internally static 
events that are characterised by onset, pitch and duration (as represented 
in piano-roll notation). 
3 Onset Synchrony Principle: ‘If a composer intends to write music in 
which the parts have a high degree of independence, then synchronous 
note onsets ought to be avoided. Onsets of nominally distinct sounds 
should be separated by 100ms or more.’ (p.40) 

 



B. Horizontal Integration 

The horizontal integration of musical elements (such as 
notes or chords) relies primarily on two fundamental 
principles: Temporal and Pitch Proximity. This means that 
notes close together in terms of time and pitch tend to be 
integrated perceptually in an auditory stream. These 
principles are described succinctly by Huron (2001) as 
follows: 

Principle of Temporal Continuity: ‘In order to evoke 
strong auditory streams, use continuous or recurring 
rather than brief or intermittent sound sources. 
Intermittent sounds should be separated by no more 
than roughly 800ms of silence in order to ensure the 
perception of continuity.’ (Huron, 2001, p.12).  
Pitch Proximity Principle: ‘The coherence of an 
auditory stream is maintained by close pitch proximity 
in successive tones within the stream. …’ (p.24) 

Most existing voice separation research takes these two 
principles as the basis for the development of 
computational models.  

 

C. Vertical vs. Horizontal Integration 

The horizontal integration of tones affects the way 
tones in vertical sonorities are integrated (and the reverse).  
Bregman (1990) talks of ‘capturing’ a tonal component 
out of a ‘mixture’. One of the strongest factors that 
weakens the vertical links between tones is the appearance 
of a tone that is proximal to one of the tones of the 
mixture in terms of both pitch and time. In a sense, there is 
a competition between the vertical and horizontal 
principles of auditory grouping. It is exactly this 
competition that makes it difficult to describe 
systematically processes of auditory streaming.  

In this paper, it is suggested that vertical integration is, 
in some respect, prior to horizontal sequencing of tones. 
The idea of capturing a component out of a mixture 
suggests that the formation of a mixture is anterior to the 
process of capturing one of its tones into a horizontal 
stream. This view is in contrast to most models of ‘voice’ 
separation that start off with horizontal organisation of 
streams and then proceed (or at least suggest that one 
should proceed) with vertical integration of streams into 
higher-level streams that may contain multiple 
simultaneous tones.  

It is suggested, that a voice separation algorithm 
should start by identifying synchronous notes that tend to 
be merged into single sonorities and then use the 
horizontal streaming principles to break them down into 
separate streams. This is an optimisation process wherein 
the various perceptual factors compete with each other in 
order to produce a ‘simple’ (as much as this is possible) 
interpretation of the music in terms of a minimal number 
of streams (ambiguity, however, should be 
accommodated).  

IV. VISA: THE VOICE 
INTEGRATION/SEGREGATION ALGORITHM  

In this section we describe the proposed voice 
separation algorithm, referred to as Voice 
Integration/Segregation Algorithm (VISA). We first 

describe how concurrent notes are merged into single 
sonorities. Next we detail the proposed algorithm and, 
finally, we describe the procedures to match notes to 
voices. 

A. Merging Notes into Single Sonorities 

During vertical integration, according to the 
synchronous note principle (described in Section 3.1), we 
have to determine when to merge concurrent notes, i.e., 
notes with synchronous onsets and same IOIs. Since it is 
possible that synchronous notes may belong to different 
voices, we need a way to decide if such merging should be 
applied. 

Given a set of concurrent notes, the algorithm examines 
a certain musical excerpt (window) around them. If inside 
the window, most co-sounding notes have different 
onsets/offsets, then it is most likely that we have 
independent monophonic voices so occasional 
synchronous notes should not be merged. 

In particular, let the entire musical piece be represented 
as a list L of notes that are sorted according to their onset 
times. For any note n ∈ L, O(n) denotes its onset time. 
Moreover, for two notes n1 and n2 ∈ L, with O(n1) ≤ 
O(n2), inter(n1,n2) denotes the number of all intermediate 
notes, i.e., all nk ∈ L with O(n1) ≤ O(nk) ≤ O(n2). For a 
given set S of concurrent notes and a window size w, we 
consider the set W that contains the notes in a window 
with length w and centered on S. Thus, W is defined as 
follows: 

W={ni ∈L-S | ∀ n ∈ S inter(ni, n) ≤ w/2 ∨ inter(n, ni) ≤ w/2} 

Next, we examine if concurrency is frequent within W. 
We define the ratio r as follows (where IOI(n) denotes the 
inter-onset interval of note n): 
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     Thus, by having a user-defined threshold T (in the 
range [0,1]) that signifies frequency, if r > T, we merge 
the notes of S as a single sonority.4 

B. The Algorithm  

The Voice Integration/Segregation Algorithm (VISA), 
receives as input the musical piece in the form of a list L 
of notes that are sorted according to their onset times, a 
window size w, and the threshold T. The output is a set of 
lists V (initially empty). After termination, each list 
contains the notes of each detected voice, each sorted 
according to onset times. Notice that VISA does not 
demand a-priori the number of voices. The proposed 
algorithm is illustrated in Fig. 2. 

In VISA, a sweep line, starting from the beginning of L, 
proceeds in a step-wise fashion (procedure 
getNextSweepLineSet) to the next onset time in L. The set 
of notes that have onsets equal to the position of the sweep 
line is denoted as sweep line set (SLS). Notice that an SLS 
may contain one or more notes. Next, every SLS is 
divided into clusters using a procedure called 

                                                        
4 The denominator of r is the number of pairs with same onset times, 
as they represent the potential concurrent notes within W. 



ClusterVertically, which partitions the notes in the SLS 
into a set of clusters C. The ClusterVertically procedure, 
according to Section 4.1, has to detect contextual 
information, accepting, thus, as parameters w and T. If, 
based on context, we decide to merge concurrent notes, 
each cluster contains all notes with the same IOI (recall 
that all notes in SLS have identical onset time). Otherwise, 
if merging is not decided, each cluster contains a single 
note. The reason for this kind of clustering is two-fold: (i) 
Concurrent notes are highly probable to belong to the 
same voice, thus if merging is decided, they are initially 
placed in the same cluster (as will be explained later on a 
cluster may split). (ii) Overlapping (in time) but not 
concurrent notes, are placed into different clusters, 
because we do not desire any overlapping between notes 
of the same voice. 

VISA(NoteList L, Set NoteList V, int w, float T) 
begin 

V ← ∅; 
while ((SLS ← getNextSweepLineSet(L)) ≠∅) 
begin-while 

C ←ClusterVertically(SLS, w, T); 
if (|V | < |C |) 
begin-if 

MatchVoicesToClusters(V, C); 
else 

MatchClustersToVoices(C, V); 
end-if 

end-while 
end 

Figure 2 The VISA algorithm. 

Given the set of clusters, C, we have to assign them to 
voices. We can form a bipartite graph, where the one set 
of vertices corresponds to the currently detected voices 
and the other set of vertices corresponds to the clusters in 
C. Between every pair of vertices in the bipartite graph, 
i.e., between every detected voice vi and cluster cj, we 
draw an edge to which we assign a cost. This cost is 
compound and is determined by the two principles 
described in Section 3.2. Thus, according to the Principle 
of Temporal Continuity, we add to the edge cost an 
amount equal to the difference between the onset time of 
the notes in cj and the onset time of the most recent note 
(or most recent cluster of notes) in vi.5 If the notes in cj 
and the last note (or last cluster of notes) in vi overlap in 
time, then we set the edge cost equal to infinity, in order to 
forbid the assignment of cj to vi. Moreover, according to 
the Pitch Proximity Principle, we add to the cost the 
minimum absolute difference between the pitches of notes 
in cj and the pitch of the last note (or last cluster of notes) 
in vi. Thus, the total cost on the edge represents the 
temporal and pitch proximity between each pair cj and vi. 

Having determined the cost on every edge, we can 
solve the assignment problem by finding the matching 
with the lowest cost in the bipartite graph. Two cases are 
possible: (i) If |V| < |C|, i.e., the number of currently 
detected voices is smaller than the number of clusters in 
the SLS, then we match voices to clusters (procedure 
MatchVoicesToClusters). This is done by assigning to 
each of the currently detected voices a cluster, in a way 

                                                        
5 In our implementation we assume that onset times are given in 
milliseconds. 

that the total cost is minimised. The remaining clusters 
that have not been assigned to a voice, constitute new 
voices that are added to V. This case is handled inside 
procedure MatchVoicesToClusters. (ii) Conversely, if |V| 
≥ |C|, we match clusters to voices (procedure 
MatchClustersToVoices), i.e., each cluster is assigned to 
one of the currently detected voices, in a way that the total 
cost is minimised. Even though in the latter (ii) case the 
clusters are fewer than the voices, due to possible 
overlapping between notes in them, a matching may not 
be feasible (the total cost equals infinity). We handle this 
case (inside procedure MatchClustersToVoices) by 
creating new voices that enable a matching.  

Finally, we introduce two extra constraints to the 
problem of a matching. The first one is that voice crossing 
should be avoided, thus a sub-optimal solution in terms of 
cost may be required that avoids voice crossing. The 
second one is that, according to the Top Voice Rule 
(Section 2), the matching has to take into account that the 
top voice should be minimally fragmented. This is 
handled by adding a penalty P to the cost of a matching 
that does not fulfill this rule. To find the matching with the 
minimal cost, a cluster may be split into sub-clusters, so 
that one can be assigned to the top voice. This may hold 
particularly in the special case where C contains a single 
cluster and there are more than one voices. More details 
about the inclusion of the two constraints in the matching 
procedures, are given in Section 4.3. 

C. The Matching Process in Detail 

For convenience, we convert the minimisation problem 
to an equivalent mazimisation one. Therefore, we are 
interested in maximising the total matching instead of  
minimising it. For this reason, the assignment of the cost 
w(eij) between a voice vi and a cluster cj is converted to 
max{ekl} – w(eij), where max{ekl} is the maximum edge 
cost determined for the specific instance of the matching 
problem (and this cost is due to the edge connecting voice 
vk and cluster cl) .  

(a) pair-wise costs
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(b) best matching (c) best crossing-free matching 
Figure 3 Maximum matching examples 

The traditional bipartite matching algorithms do not 
preserve the order of the matching. In our case, order 
preservation is important because voice crossing should be 
avoided. By enforcing the rule that each matched pair 
should not ‘intersect’ another matched pair,  a new 
problem is formulated that can not be directly tackled by 
bipartite matching algorithms. This issue is depicted in 
Figure 3, where an instance is illustrated with three voices 
and five clusters.  Figure 3(a) gives the pair-wise costs for 
assigning voices to clusters. A maximum weighted 
matching is given in Figure 3(b), with a total cost of 
9+9+5 = 23. Evidently, the maximum weighted matching 



in this graph does not necessarily avoid voice crossing. A 
crossing-free maximum weighted matching with cost 
9+5+8 = 22 is depicted in Figure 3(c).  

Although the number of voices and clusters is usually 
small (i.e., 3, 4, 5) we propose en efficient solution which 
can handle larger numbers of voices and clusters. The 
naïve approach to determine the best crossing-free 
matching is to perform an exhaustive search. This 
technique does not scale well for larger number of voices 
and clusters.  

The proposed matching algorithm is based on dynamic 
programming (Cormen et. al. 2001). Let VSEQ denote the 
sequence of notes, and CSEQ be the sequence of clusters. 
Without loss of generality, we assume that we have less 
voices than clusters, i.e. |VSEQ| < |CSEQ|. Equality is 
trivially solved by matching the first voice to the first 
cluster, the second voice to the second cluster and so forth. 
The case where |VSEQ| > |CSEQ| is handled similarly. Let 
Mij denote the current total matching cost after voice vi 
and cluster ci have been matched. The recurrence formula 
used by the dynamic programming technique in our case 
is the following:  

Mij = max{Mi-1,j-1 + w(i,j), Mi-1,j} 

This formula states that either voice vi will be matched 
with cluster cj, or a gap will be placed in the voice 
sequence, meaning that we postpone the matching of vi. 
We illustrate the matching process by using the example 
instance given in Figure 3. Therefore, VSEQ = v1, v2, v3 
and CSEQ = c1, c2, c3, c4, c5. The matching process for is 
depicted in Figure 4(a), where each cell of the matrix M 
represents the total matching cost. The matrix has 3+1=4 
rows and 5+1=6 columns (an additional row and column 
have been placed). The matrix is filled according to the 
previous recurrence equation, by starting at the upper-left 
cell and ending at the lower-right one. Initially we place a 
zero in the first row and first column of the matrix. The 
cost of the maximum matching is shown in the lower-right 
cell, which contains the value 22. 

0 0 0 0 0 0
0 9 9 9 9 9
0 9 10 10 14 14
0 0 10 10 15 22

      c1   c2   c3  c4  c5

v1
v2
v3

0 0 0 0 0 0
0 9 9 9 9 9
0 9 10 10 14 14
0 0 10 10 15 22

      c1   c2   c3  c4  c5

v1
v2
v3

(a) matching costs (b) matching path

      c1     c2     c3    c4    c5

      v1     __     __    v2    v3

(c) final assigment  
Figure 4 The matching process 

The best matching cost by itself does not give the 
assignment of voices to clusters. To achieve this, the 
matching path needs to be determined. We perform a 
trace-back process starting at the cell which contains the 
best matching value (i.e. cell with the value 22 in the 
matrix).  Based on the fact that the matching cost of v3 and 
c5 is 8, the only possible predecessors are the top and 
diagonal cells which contain the value 14. However, in the 
trace-back process we never choose a vertical cell, since 
no gaps are allowed to be placed on the cluster sequence, 

meaning that all voices must be matched. The only 
alternative left is to choose the diagonal cell. This means 
that voice v3 will be matched to cluster c5. The current cell 
is now (2,4) which contains the value 14. Again, since the 
matching cost of v2 and c4 is 5, the only valid predecessor 
is cell (1,3) which contains the value 9 (recall that we 
never move vertically). Since we have chosen to move 
diagonally, we match voice v2 to cluster c4.  The next two 
steps involve a horizontal movement, meaning that we 
place two gaps in the voice sequence. These steps take us 
to cell (1,1) from where we can only move diagonally to 
cell (0,0). This diagonal movement implies an assignment 
of voice v1 to cluster c1. The final assignment is given in 
Figure 4(c), whereas the matching path is given in Figure 
4(b), and is represented by the shaded cells. 

According to the previous discussion, the running time 
of the algorithm is O(n*m) (n>=2, m>=2) where n is the 
number of voices and m the number of clusters. Evidently, 
we need O(n*m) time to calculate all elements of the 
matrix M, and O(n+m) time to reconstruct the matching 
path. On the other hand, if an exhaustive algorithm is used 
the number of all available crossing-free matchings that 
can be produced are C(m,n), which are all possible 
combinations of selecting n out of m items. For some 
values of m and n, the exhaustive algorithm performs 
better than dynamic programming. Therefore, according 
to the current values of m and n we can decide whether to 
use the exhaustive method or switch to dynamic 
programming. However, even if in several cases the 
exhaustive method performs better, counting all possible 
matchings and selecting the best one may become tedious, 
since we have to keep track of which matchings have been 
examined and which have not. On the other hand, 
dynamic programming offers a more clear framework and 
determines the best matching in a more manageable and 
systematic way. 

V. EXPERIMENTS AND RESULTS 

A. Test Data 

The proposed algorithm has been tested on a small set 
of musical works for piano. Four pieces with clearly 
defined streams/voices are used as groundtruth for testing 
the performance of the algorithm. The first two pieces are 
two fugues from the first book of the Well-Tempered 
Clavier by J.S.Bach (Fugue No.1 in C major, BWV846, 
and Fugue No.14 in F# major, BWV859); these 
polyphonic works consist of four independent voices. A 
mazurka by F.Chopin (Mazurka, Op.7, No.5) consists of a 
melody (upper staff) and accompanying harmony (lower 
staff). Finally, the “Harmony Club Waltz” by S.Joplin has 
two parallel homophonic streams (chordal ‘voices’) that 
correspond to the two piano staves. See musical excerpts 
in figures 5, 6, and 7. 

In this pilot study, the aim was to examine whether a 
single algorithm can be applied to two very different types 
of music (i.e. pure polyphonic music and music containing 
clear homophonic textures). All the parameters of the 
algorithm are the same for all four pieces; the number of 
streams/voices is determined automatically (not set 
manually). It should be noted that for the two pieces by 
Chopin and Joplin all other voice separation algorithms 
would automatically determine at least four different 



voices (up to eight voices) that do not have perceptual 
validity (and musicologically are problematic). 

Annotated datasets for musical streams/voices - as 
voices are defined in this paper - do not exist. A small 
dataset was therefore selected for which it is assumed that 
musicologists/musical analysts would unreservedly agree 
on the number of independent musical streams in each 
piece.6 Working on a small dataset has enabled both 
quantitative and qualitative evaluation of the results (all 
the results have been analysed note-by-note and mistakes 
have been categorised in types of problems – see section 
5.2). A larger dataset, however, is currently assembled in 
order to run larger scale tests. 

At present, the algorithm has been applied to quantised 
musical data (symbolic scores converted to MIDI). 
Expressively performed musical data (e.g. expressive 
MIDI) can be quantised (e.g., see Cambouropoulos 2000) 
before being fed into the algorithm.  

 
Figure 5  Four independent streams/voices are present in this excerpt 
from the Fugue No.1 in C major, WTCI, BWV846 by J.S.Bach. The 
algorithm performs voice separation correctly except for the last five 
notes of the upper voice which are assigned to the second voice rather 
than the first voice (as these are closer by a semitone to the last note of 

the second voice). 

 
Figure 6  Two independent streams/voices (melody and 

accompaniment) are correctly determined by the algorithm in this 
excerpt from the Mazurka, Op.7, No.5 by F.Chopin. 

 
Figure 7  Two independent chordal streams/voices are correctly 

determined by the algorithm in this excerpt from the “Harmony Club 
Waltz” by S.Joplin; the only mistake is indicated by the circled note 
which ‘erroneously’ is placed in the upper stream (because of pitch 

proximity). 

                                                        
6 These independent ‘voices’ correspond to separate spines in the 
kern format; all eight test pieces have been obtained from 
KernScores <http://kern.humdrum.org>. 

B. Quantitative Results 

The evaluation metric used is the precision of the 
obtained result. For the previously described musical 
dataset, Table 1 shows the results. The effectiveness of the 
proposed methodology is evident by the high precision 
rates achieved for all eight pieces.  

TABLE I.  
RESULTS IN TERMS OF PRECISION FOR THE FOUR PIECES 

Musical Work Precision 
J.S.Bach, Fugue No.1 in C major, BWV846 92,38% 
J.S.Bach, Fugue No.14 in F# major, BWV859 95,56% 
F. Chopin, Mazurka, Op.7, No.5 100% 
S.Joplin, “Harmony Club Waltz” 98.12% 
 
Additionally, we have experimented with the impact 

of the user-defined threshold value T on the precision of 
the proposed algorithm. The experiment (Figure 8) refers 
to the examination of the attained precision with respect to 
the user-defined threshold T. The mazurka and waltz 
datasets naturally exhibit increased synchronicity of notes, 
thus lower values of T give high precision, while on the 
contrary, the two fugues do not include notes that can be 
merged into single sonorities and thus require higher 
values of T.  
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Figure 8 Precision vs. user-defined threshold T. 

C. Qualitative Analysis 

The aforementioned results were examined in detail in 
order to understand the kinds of mistakes produced by the 
algorithm. Most of these problems are, in a sense, 
expected and cannot be solved merely when taking into 
account only pitch and temporal distances between notes.  

The majority of wrong results were given in cases 
where the number of voices change and erroneous 
connections are introduced due primarily to pitch 
proximity (for instance, in Figure 5 the algorithm 
erroneously ‘gives’ the last five notes of the upper voice to 
the second voice simply because the first of these notes is 
closer by a semitone to the last note of the second voice). 
Kilian and Hoos (2002) address this same problem 
claiming that, in essence, it is unsolvable at the note level 
(‘It seems that when only considering the notes … there is 
no reason why another separation should be preferred.’ 
p.45). 

http://kern.humdrum.org>


A second kind of problem involves voice crossing. 
Since voice crossing is disallowed by the algorithm notes 
at points where voices cross (in the Bach fugues) are 
assigned to wrong voices.  

A third type of mistake relates to the breaking of 
vertically merged notes into sub-sonorities and allocating 
these to different voices; in this case the breaking point in 
the sonority may be misplaced (see, for instance, circled 
note in Figure 7). 

The success rate (see previous section) of the 
algorithm on this small but diverse dataset is remarkable. 
It should be emphasised that the algorithm is capable of 
detecting different number of voices in the same piece 
automatically, not only in cases where a ‘monophonic’ 
voice may disappear for a while and reappear later on 
(e.g., fugues), but also in cases where 
polyphonic/homophonic textures change resulting in a 
different number of multi-note voices (e.g., example in 
Figure 9).  

 
Figure 9 In the opening of the Mazurka, Op.7, No.5 by F.Chopin, the 

algorithm detects correctly one voice (low octaves) and, then, switches 
automatically to two voices (melody and accompaniment). 

VI. CONCLUSIONS 

In this paper the notions of voice and auditory stream 
have been examined, and an attempt has been made to 
clarify the various meanings. It is suggested that if ‘voice’ 
is understood as a musicological parallel to the concept of 
auditory stream, then multi-note sonorities should be 
allowed within individual ‘voices’.   

It is proposed that a first step in voice separation is 
identifying synchronous note sonorities and then breaking 
these into sub-sonorities incorporated in horizontal 
streams or ‘voices’. This proposal is in direct contrast with 
most computational systems that start by finding first 
horizontal ‘voices’ and then merging these into higher 
level ‘voices’ (actually, the latter step has not been 
implemented by any of the aforementioned computational 
models).  

The proposed voice separation algorithm incorporates 
the two principles of temporal and pitch proximity, and 
additionally, the Synchronous Note Principle and the 
Tonal Fusion Principle. Allowing both horizontal and 
vertical integration enables the algorithm to perform well 
not only in polyphonic music that has a fixed number of 
‘monophonic’ lines but in the general case where both 
polyphonic and homophonic elements are mixed together. 
We have shown in the above experiments that a single 
algorithm, with the same parameters, can achieve very 
good performance in diverse musical textures in terms 
identifying perceptually pertinent voices/streams. 

The pilot study reported in this paper gives promising 
results in the domain of voice separation. Future work 
involves testing the algorithm on a much larger database 
and, also, incorporating additional principles such as the 
Pitch Co-modulation Principle (notes that move in parallel 
intervals, especially in octaves, are strongly integrated) . 
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