
Horizontal and Vertical Integration/Segregation
in Auditory Streaming: A Voice Separation

Algorithm for Symbolic Musical Data

Ioannis Karydis*, Alexandros Nanopoulos*, Apostolos Papadopoulos*, Emilios Cambouropoulos† and
Yannis Manolopoulos*

* Department of Computer Science, Aristotle University of Thessaloniki, Greece,
{karydis,ananopou,apapadop,manolopo}@csd.auth.gr

† Department of Music Studies, Aristotle University of Thessaloniki, Greece, emilios@mus.auth.gr

Abstract — Listeners are thought to be capable of perceiving
multiple voices in music. Adopting a perceptual view of
musical ‘voice’ that corresponds to the notion of auditory
stream, a computational model is developed that splits a
musical score (symbolic musical data) into different voices.
A single ‘voice’ may consist of more than one synchronous
notes that are perceived as belonging to the same auditory
stream; in this sense, the proposed algorithm, may separate
a given musical work into fewer voices than the maximum
number of notes in the greatest chord (e.g. a piece consisting
of four or more concurrent notes may be separated simply
into melody and accompaniment). This is paramount, not
only in the study of auditory streaming per se, but also for
developing MIR systems that enable pattern recognition and
extraction within musically pertinent ‘voices’ (e.g. melodic
lines). The algorithm is tested qualitatively and
quantitatively against a small dataset that acts as
groundtruth.

I. INTRODUCTION
It appears that the term ‘voice’ has different meanings

for different research fields (traditional musicology, music
cognition, computational musicology). Recently, there
have been a number of attempts (e.g. Temperley, 2001;
Cambouropoulos 2000; Kilian & Hoos 2002; Szeto and
Wong, 2003; Chew & Wu 2004; Kirlin & Utgoff 2005;
Madsen and Widmer 2006) to model computationally the
segregation of polyphonic music into separate voices.
Much of this research is influenced by empirical studies in
music perception (e.g. Bregman, 1990; Deutsch, 1999;
Huron 2001), as well as by more traditional musicological
concepts such as melody, counterpoint, voice-leading and
so on.

Before presenting various aspects of voice separation
in terms of perception and computational modelling, it is
important to clarify what is meant by the term ‘voice’. A
detailed discussion in presented by Cambouropoulos
(2006). In this paper, a single musical example will be
given that presents three different meanings of the term
voice.

In Figure 1 three musical examples are given that
share the same harmonic structure. In these examples, we
can see three different ways in which ‘voice’ may be
understood: literally ‘voice’ (human voice or monophonic

instrument)1, harmonic ‘voice’ relating to harmonic
content and evolution, and perceptual ‘voice’ relating to
auditory streaming. In terms of literal voice, the first
instance (fig.1a) is purely monophonic (one voice), the
second (fig.1b) consists of two voices, and the third
(fig.1c) is made up of three voices. In terms of harmonic
voice, all instances can be analysed as comprising of three
voices that relate to the implied harmony (progression of
triadic chords I-IV-V-I). In terms of perceptual voice, each
instance is perceived as a single auditory stream (e.g., in
fig.1c a listener does not perceive three independent
voices but a single unified progression of chords).

Figure 1 Number of voices: in terms of literal voices we have in the
three examples one, two and three voices respectively; in terms of

harmonic voices all examples can be understood as comprising of three
voices (triadic harmony); in terms of perceptual voices/streams each

example is perceived as a single auditory stream (harmonic
accompaniment).

The standard understanding of the term voice is that
voice is a monophonic sequence of successive non-
overlapping musical tones; a single voice is thought not to
contain multi-tone sonorities. However, if ‘voice’ is seen
in the light of auditory streaming then it becomes clear
that the standard meaning is not sufficient. It is possible
that a single monophonic sequence may be perceived as

1 The literal meaning of the term ‘voice’ may be broadened, making
it applicable to music produced by a single ‘polyphonic’ instrument
(such as the piano, celesta, guitar etc.) in cases where the music
consists of a relatively fixed number of individual musical lines (e.g.
3- or 4-part fugues or other 4-part works for keyboard instruments).
Terms that are synonymous to ‘voice’ in this sense are ‘part’ and
‘line’ – in the case of polyphonic music the term ‘contrapuntal voice’
is often used. This paper is partially funded by a national GSRT PAVET project

mailto:@csd.auth.gr
mailto:emilios@mus.auth.gr

more than one voices/streams (e.g., pseudopolyphony or
implied polyphony) or that a passage containing
concurrent notes may be perceived as a single perceptual
entity (e.g., homophonic passages as in fig.1c). Auditory
stream integration/segregation (in music) determines how
successions of musical events are perceived as belonging
to coherent sequences and, at the same time, segregated
from other independent musical sequences. A number of
general perceptual principles govern the way musical
events are grouped together in musical streams (see
section 3).

The perceptual view of voice adopted in this study,
that allows multi-tone simultaneities in a single ‘voice’, is
the most significant difference of the proposed model to
the other existing models. In the examples of Figure 1, all
existing algorithms (see exception regarding Kilian and
Hoos’s algorithm in the next section), that are based on
purely monophonic definitions of voice, would find two
voices in the second example (fig.1b) and three voices in
the third example (fig.1c). It is clear that such voices are
not independent voices and do not have a life of their own;
it makes more musical sense to consider the notes in each
example as a single coherent whole (a unified harmonic
sequence). The algorithm proposed in this paper
determines that in all three examples we have a single
‘voice’/stream.

In this paper, initially, a number of recent voice
separation algorithms are briefly described and their main
differences to the current proposal are highlighted. Then,
the fundamental auditory streaming principles that form
the basis of the proposed model are presented. The
description of the algorithm follows. Finally, the way the
algorithm has been evaluated and the results of the
application of the algorithm on four different musical
works are presented.

II. COMPUTATIONAL MODELS OF VOICE
SEPARATION

‘Voice’ separation algorithms are very useful in
computational implementations as they allow pre-
processing of musical data opening thus the way for more
efficient and higher quality analytic results. In domains
such as music information retrieval or automated musical
analysis, having sophisticated models that can identify
multiple melodic voices and/or ‘voices’ consisting of
multi-note sonorities can assist more sophisticated
processing within the voices (rather than across voices).
For instance, if one wants to identify musical works that
contain a certain melodic pattern, this pattern should be
found not spread across different parts (perceptually
implausible) neither in voices that are not perceptually
independent (e.g. internal parts in a homophonic work)
but within voices that are heard as having a life of their
own.

Recently, there have been a number of attempts to
model computationally the segregation of polyphonic
music into separate ‘voices’ (e.g. Marsden, 1992;
Temperley, 2001; Cambouropoulos 2000; Kilian & Hoos
2002; Szeto and Wong, 2003; Chew & Wu 2004; Kirlin &
Utgoff 2005; Madsen and Widmer 2006). These models
differ in many ways but share two fundamental
assumptions:

‘Voice’ is taken to mean a monophonic sequence of
successive non-overlapping musical tones (exception is

the model by Kilian and Hoos which will be discussed
further below)

The underlying perceptual principles that organise
tones in voices are the principles of temporal and pitch
proximity (cf. Huron’s Temporal Continuity and Pitch
Proximity principles).

In essence, these models attempt to determine a
minimal number of lines/voices such that each line
consists of successions of tones that are maximally
proximal in the temporal and pitch dimensions. A distance
metric (primarily in regards to pitch and time proximity) is
established between each pair of tones within a certain
time window, and then an optimisation process attempts to
find a solution that minimises the distances within each
voice keeping the number of voices to a minimum
(usually equal to the maximum number of notes in the
largest chord). These models assume that a voice is a
succession of individual non-overlapping tones (sharing of
tones between voices or crossing of voices is forbidden or
discouraged).

For instance, Temperley (2001) proposes a number of
preference rules that suggest large leaps (Pitch Proximity
Rule) and rests (White Square Rule) should be avoided in
streams, the number of streams should be minimised (New
Stream Rule), common tones shared between voices
should be avoided (Collision Rule) and the top voice
should be minimally fragmented (Top Voice Rule) – the
maximum number of voices and weight of each rule is
user-defined. Cambouropoulos (2000) assumes that tones
within streams should be maximally proximal in terms of
pitch and time, that the number of voices should be kept to
a minimum and that voices should not cross – the
maximum number of streams is equal to the number of
notes in the largest chord. Chew and Wu (2004) base their
algorithm on the assumption that tones in the same voice
should be contiguous and proximal in pitch, and that
voice-crossing should be avoided – the maximum number
of voices is equal to the number of notes in the largest
chord. Szeto and Wong (2003) model stream segregation
as a clustering problem based on the assumption that a
stream is essentially a cluster since it is a group of events
sharing similar pitch and time attributes (i.e. proximal in
the temporal and pitch dimensions) – the algorithm
determines automatically the number of streams/clusters.
All of these voice separation algorithms assume that a
voice is a monophonic succession of tones.

The voice separation model by Kilian and Hoos (2002)
differs from the above models in that it allows entire
chords to be assigned to a single voice, i.e. more than one
synchronous notes may be considered as belonging to one
stream. The model partitions a piece into slices; each
contiguous slices contain at least two non-overlapping
notes. A cost function is calculated by summing penalty
values for features that promote segregation such as large
pitch intervals, rests/gaps, and note overlap between
successive notes, and large pitch intervals and onset
asynchrony within chords. Within each slice the notes are
separated into streams by minimising this cost function.
The user can adjust the penalty values in order to give
different prominence values to the various segregation
features leading thus to a different separation of voices.
The maximum number of voices is user-defined or
defined automatically by the number of notes in the
largest chord.

The aim of the algorithm is to find ‘a range of voice
separations that can be seen as reasonable solutions in the
context of different types of score notation’ (Kilian and
Hoos, 2002, p.39). The pragmatic goal of the algorithm is
the derivation of reasonable score notation - not
perceptually meaningful voices. The algorithm is based on
perceptual principles, but the results are not necessarily
perceptually valid (e.g., a 4-part homophonic piece may
be ‘forced’ to split into two musical staves that do not
correspond to perceptually pertinent streams). The
algorithm does not discover automatically the number of
independent musical ‘voices’ in a given excerpt; if the
user has not manually defined the maximum number of
voices, the algorithm automatically sets the maximum
number equal to the maximum number of co-sounding
notes – in this case the algorithm becomes similar to all
other algorithms presented above.

Kilian and Hoos’s model allows multiple synchronous
or overlapping tones in a single stream based on pitch and
temporal proximity. However, there are two problems
with the way this idea is integrated in the model. Firstly,
simple pitch and temporal proximity are not sufficient for
perceptually pertinent ‘vertical’ integration. For instance,
Kilian and Hoos’s model can separate a 4-part fugue into
two ‘streams’ based on temporal and pitch proximity, but
these two ‘streams’ are not perceptual streams but rather a
convenient way to divide notes into two staves. In
perceptual terms, tones merge when they have ‘same’
onsets and durations (see next section); overlapping tones
with different onsets and durations do not merge (there
exist, however, special cases where this happens – not
discussed in this paper). Secondly, synchronous notes that
are separated by a small pitch interval are not in general
more likely to be fused than tones further apart. For
instance, tones an octave apart are strongly fused whereas
tones a 2nd apart are less likely to be fused (see next
section). The perceptual factor of tonal fusion is not taken
into account by the model.

Kilian and Hoos’s model is pioneering in the sense
that multi-note sonorities within single voices are allowed;
their model, however, is apt to give results that are
erroneous in terms of auditory stream segregation as this
is not the goal of the algorithm.

III. PERCEPTUAL PRINCIPLES FOR VOICE
SEPARATION

In this section, fundamental principles of perceptual
organisation of musical sounds into streams will be
presented that form the basis of the current computational
model (next section). Huron (2001) provides an excellent
survey of relevant research and presents a set of 10
principles that cover all major aspects of stream
integration/segregation; we will use a number of these
principles as the starting-point of our exploration.

Since we have assumed that a voice may contain
multi-tone sonorities, it is important to distinguish
between principles that are primarily responsible for
vertical integration and ones for horizontal integration.
Below we will look into the way tones are organised
‘vertically’ and ‘horizontally’ into coherent ‘wholes’

A. Vertical Integration

Bregman (1990) explores in depth processes relating to
the perceptual integration/segregation of simultaneous
auditory components. In this paper, we will focus only on
two aspects of such processes that relate to two principles
presented by Huron (2001), namely the principles of
Onset Synchrony and Tonal Fusion.

Sounds that are coordinated and evolve synchronously
in time tend to be perceived as components of a single
auditory event. ‘Concurrent tones are much more apt to be
interpreted by the auditory system as constituents of a
single complex sound event when the tones are temporally
aligned.’ (Huron, 2001, p.39). Concurrent tones that start,
evolve and finish together tend to be grouped together into
a single sonority.

In practical terms, we could state that notes that start
concurrently and have same duration tend to be merged
vertically into a single sonority.2 This principle relates to
Huron’s Onset Synchrony Principle3 but it differs in a
number of ways as discussed in Cambouropoulos 2006.

Synchronous Note Principle: Notes with synchronous
onsets and same inter-onset intervals IOIs (durations)
tend to be merged into a single sonority.

A second important factor for vertical integration of
tones, relates to the Principle of Tonal Fusion: The fusion
between synchronous notes is strongest when notes are in
unison, very strong when separated by an octave, strong
when separated by a perfect fifth and progressively
weaker when separated by other intervals.

Principle of Tonal Fusion: The perceptual
independence of concurrent tones is weakened when
they are separated by intervals (in decreasing order:
unisons, octaves, perfect fifths…) that promote tonal
fusion (Huron, 2001, p.19).

This principle suggests that concurrent pitches are
integrated depending on the degree of tonal fusion implied
by interval type rather than mere pitch proximity; this
principle appears to be (at least partially) in conflict with
the pitch proximity principle that has been adopted for
vertical integration in the computational model by Kilian
and Hoos (2002).

Finally, according to the Pitch Co-modulation
Principle: ‘The perceptual union of concurrent tones is
encouraged when pitch motions are positively correlated.’
(Huron, 2001, p.31) The strongest manifestation of this
principle is when notes move in parallel intervals
(especially in octaves). The Pitch Co-modulation Principle
can be seen as a special case of the Synchronous Note
Principle in the sense that the integration of synchronised
note progressions is reinforced when pitch progressions
are positively correlated (e.g. moving in parallel octaves,
fifths etc.). This principle has not yet been incorporated in
the current version of the algorithm.

2 For simplicity, in this study we consider notes as internally static
events that are characterised by onset, pitch and duration (as represented
in piano-roll notation).
3 Onset Synchrony Principle: ‘If a composer intends to write music in
which the parts have a high degree of independence, then synchronous
note onsets ought to be avoided. Onsets of nominally distinct sounds
should be separated by 100ms or more.’ (p.40)

B. Horizontal Integration

The horizontal integration of musical elements (such as
notes or chords) relies primarily on two fundamental
principles: Temporal and Pitch Proximity. This means that
notes close together in terms of time and pitch tend to be
integrated perceptually in an auditory stream. These
principles are described succinctly by Huron (2001) as
follows:

Principle of Temporal Continuity: ‘In order to evoke
strong auditory streams, use continuous or recurring
rather than brief or intermittent sound sources.
Intermittent sounds should be separated by no more
than roughly 800ms of silence in order to ensure the
perception of continuity.’ (Huron, 2001, p.12).
Pitch Proximity Principle: ‘The coherence of an
auditory stream is maintained by close pitch proximity
in successive tones within the stream. …’ (p.24)

Most existing voice separation research takes these two
principles as the basis for the development of
computational models.

C. Vertical vs. Horizontal Integration

The horizontal integration of tones affects the way
tones in vertical sonorities are integrated (and the reverse).
Bregman (1990) talks of ‘capturing’ a tonal component
out of a ‘mixture’. One of the strongest factors that
weakens the vertical links between tones is the appearance
of a tone that is proximal to one of the tones of the
mixture in terms of both pitch and time. In a sense, there is
a competition between the vertical and horizontal
principles of auditory grouping. It is exactly this
competition that makes it difficult to describe
systematically processes of auditory streaming.

In this paper, it is suggested that vertical integration is,
in some respect, prior to horizontal sequencing of tones.
The idea of capturing a component out of a mixture
suggests that the formation of a mixture is anterior to the
process of capturing one of its tones into a horizontal
stream. This view is in contrast to most models of ‘voice’
separation that start off with horizontal organisation of
streams and then proceed (or at least suggest that one
should proceed) with vertical integration of streams into
higher-level streams that may contain multiple
simultaneous tones.

It is suggested, that a voice separation algorithm
should start by identifying synchronous notes that tend to
be merged into single sonorities and then use the
horizontal streaming principles to break them down into
separate streams. This is an optimisation process wherein
the various perceptual factors compete with each other in
order to produce a ‘simple’ (as much as this is possible)
interpretation of the music in terms of a minimal number
of streams (ambiguity, however, should be
accommodated).

IV. VISA: THE VOICE
INTEGRATION/SEGREGATION ALGORITHM

In this section we describe the proposed voice
separation algorithm, referred to as Voice
Integration/Segregation Algorithm (VISA). We first

describe how concurrent notes are merged into single
sonorities. Next we detail the proposed algorithm and,
finally, we describe the procedures to match notes to
voices.

A. Merging Notes into Single Sonorities

During vertical integration, according to the
synchronous note principle (described in Section 3.1), we
have to determine when to merge concurrent notes, i.e.,
notes with synchronous onsets and same IOIs. Since it is
possible that synchronous notes may belong to different
voices, we need a way to decide if such merging should be
applied.

Given a set of concurrent notes, the algorithm examines
a certain musical excerpt (window) around them. If inside
the window, most co-sounding notes have different
onsets/offsets, then it is most likely that we have
independent monophonic voices so occasional
synchronous notes should not be merged.

In particular, let the entire musical piece be represented
as a list L of notes that are sorted according to their onset
times. For any note n ∈ L, O(n) denotes its onset time.
Moreover, for two notes n1 and n2 ∈ L, with O(n1) ≤
O(n2), inter(n1,n2) denotes the number of all intermediate
notes, i.e., all nk ∈ L with O(n1) ≤ O(nk) ≤ O(n2). For a
given set S of concurrent notes and a window size w, we
consider the set W that contains the notes in a window
with length w and centered on S. Thus, W is defined as
follows:

W={ni ∈L-S | ∀ n ∈ S inter(ni, n) ≤ w/2 ∨ inter(n, ni) ≤ w/2}

Next, we examine if concurrency is frequent within W.
We define the ratio r as follows (where IOI(n) denotes the
inter-onset interval of note n):

|)}()(,,|),{(|
|)}()()()(,,|),{(|

jijiji

jijijiji

nOnOWnWnnn
nIOInIOInOnOWnWnnn

r
=∈∈

=∧=∈∈
=

 Thus, by having a user-defined threshold T (in the
range [0,1]) that signifies frequency, if r > T, we merge
the notes of S as a single sonority.4

B. The Algorithm

The Voice Integration/Segregation Algorithm (VISA),
receives as input the musical piece in the form of a list L
of notes that are sorted according to their onset times, a
window size w, and the threshold T. The output is a set of
lists V (initially empty). After termination, each list
contains the notes of each detected voice, each sorted
according to onset times. Notice that VISA does not
demand a-priori the number of voices. The proposed
algorithm is illustrated in Fig. 2.

In VISA, a sweep line, starting from the beginning of L,
proceeds in a step-wise fashion (procedure
getNextSweepLineSet) to the next onset time in L. The set
of notes that have onsets equal to the position of the sweep
line is denoted as sweep line set (SLS). Notice that an SLS
may contain one or more notes. Next, every SLS is
divided into clusters using a procedure called

4 The denominator of r is the number of pairs with same onset times,
as they represent the potential concurrent notes within W.

ClusterVertically, which partitions the notes in the SLS
into a set of clusters C. The ClusterVertically procedure,
according to Section 4.1, has to detect contextual
information, accepting, thus, as parameters w and T. If,
based on context, we decide to merge concurrent notes,
each cluster contains all notes with the same IOI (recall
that all notes in SLS have identical onset time). Otherwise,
if merging is not decided, each cluster contains a single
note. The reason for this kind of clustering is two-fold: (i)
Concurrent notes are highly probable to belong to the
same voice, thus if merging is decided, they are initially
placed in the same cluster (as will be explained later on a
cluster may split). (ii) Overlapping (in time) but not
concurrent notes, are placed into different clusters,
because we do not desire any overlapping between notes
of the same voice.

VISA(NoteList L, Set NoteList V, int w, float T)
begin

V ← ∅;
while ((SLS ← getNextSweepLineSet(L)) ≠∅)
begin-while

C ←ClusterVertically(SLS, w, T);
if (|V | < |C |)
begin-if

MatchVoicesToClusters(V, C);
else

MatchClustersToVoices(C, V);
end-if

end-while
end

Figure 2 The VISA algorithm.

Given the set of clusters, C, we have to assign them to
voices. We can form a bipartite graph, where the one set
of vertices corresponds to the currently detected voices
and the other set of vertices corresponds to the clusters in
C. Between every pair of vertices in the bipartite graph,
i.e., between every detected voice vi and cluster cj, we
draw an edge to which we assign a cost. This cost is
compound and is determined by the two principles
described in Section 3.2. Thus, according to the Principle
of Temporal Continuity, we add to the edge cost an
amount equal to the difference between the onset time of
the notes in cj and the onset time of the most recent note
(or most recent cluster of notes) in vi.5 If the notes in cj
and the last note (or last cluster of notes) in vi overlap in
time, then we set the edge cost equal to infinity, in order to
forbid the assignment of cj to vi. Moreover, according to
the Pitch Proximity Principle, we add to the cost the
minimum absolute difference between the pitches of notes
in cj and the pitch of the last note (or last cluster of notes)
in vi. Thus, the total cost on the edge represents the
temporal and pitch proximity between each pair cj and vi.

Having determined the cost on every edge, we can
solve the assignment problem by finding the matching
with the lowest cost in the bipartite graph. Two cases are
possible: (i) If |V| < |C|, i.e., the number of currently
detected voices is smaller than the number of clusters in
the SLS, then we match voices to clusters (procedure
MatchVoicesToClusters). This is done by assigning to
each of the currently detected voices a cluster, in a way

5 In our implementation we assume that onset times are given in
milliseconds.

that the total cost is minimised. The remaining clusters
that have not been assigned to a voice, constitute new
voices that are added to V. This case is handled inside
procedure MatchVoicesToClusters. (ii) Conversely, if |V|
≥ |C|, we match clusters to voices (procedure
MatchClustersToVoices), i.e., each cluster is assigned to
one of the currently detected voices, in a way that the total
cost is minimised. Even though in the latter (ii) case the
clusters are fewer than the voices, due to possible
overlapping between notes in them, a matching may not
be feasible (the total cost equals infinity). We handle this
case (inside procedure MatchClustersToVoices) by
creating new voices that enable a matching.

Finally, we introduce two extra constraints to the
problem of a matching. The first one is that voice crossing
should be avoided, thus a sub-optimal solution in terms of
cost may be required that avoids voice crossing. The
second one is that, according to the Top Voice Rule
(Section 2), the matching has to take into account that the
top voice should be minimally fragmented. This is
handled by adding a penalty P to the cost of a matching
that does not fulfill this rule. To find the matching with the
minimal cost, a cluster may be split into sub-clusters, so
that one can be assigned to the top voice. This may hold
particularly in the special case where C contains a single
cluster and there are more than one voices. More details
about the inclusion of the two constraints in the matching
procedures, are given in Section 4.3.

C. The Matching Process in Detail

For convenience, we convert the minimisation problem
to an equivalent mazimisation one. Therefore, we are
interested in maximising the total matching instead of
minimising it. For this reason, the assignment of the cost
w(eij) between a voice vi and a cluster cj is converted to
max{ekl} – w(eij), where max{ekl} is the maximum edge
cost determined for the specific instance of the matching
problem (and this cost is due to the edge connecting voice
vk and cluster cl) .

(a) pair-wise costs

v1

v2

v3

v1

v2

v3

c1

c2

c3

c4

c5

c1

c2

c3

c4

c5

v1 9 1 9 1
v2 9 1 1 5
v3 0 1 0 5

c1 c2 c3 c4 c5

1
0
8

(b) best matching (c) best crossing-free matching
Figure 3 Maximum matching examples

The traditional bipartite matching algorithms do not
preserve the order of the matching. In our case, order
preservation is important because voice crossing should be
avoided. By enforcing the rule that each matched pair
should not ‘intersect’ another matched pair, a new
problem is formulated that can not be directly tackled by
bipartite matching algorithms. This issue is depicted in
Figure 3, where an instance is illustrated with three voices
and five clusters. Figure 3(a) gives the pair-wise costs for
assigning voices to clusters. A maximum weighted
matching is given in Figure 3(b), with a total cost of
9+9+5 = 23. Evidently, the maximum weighted matching

in this graph does not necessarily avoid voice crossing. A
crossing-free maximum weighted matching with cost
9+5+8 = 22 is depicted in Figure 3(c).

Although the number of voices and clusters is usually
small (i.e., 3, 4, 5) we propose en efficient solution which
can handle larger numbers of voices and clusters. The
naïve approach to determine the best crossing-free
matching is to perform an exhaustive search. This
technique does not scale well for larger number of voices
and clusters.

The proposed matching algorithm is based on dynamic
programming (Cormen et. al. 2001). Let VSEQ denote the
sequence of notes, and CSEQ be the sequence of clusters.
Without loss of generality, we assume that we have less
voices than clusters, i.e. |VSEQ| < |CSEQ|. Equality is
trivially solved by matching the first voice to the first
cluster, the second voice to the second cluster and so forth.
The case where |VSEQ| > |CSEQ| is handled similarly. Let
Mij denote the current total matching cost after voice vi
and cluster ci have been matched. The recurrence formula
used by the dynamic programming technique in our case
is the following:

Mij = max{Mi-1,j-1 + w(i,j), Mi-1,j}

This formula states that either voice vi will be matched
with cluster cj, or a gap will be placed in the voice
sequence, meaning that we postpone the matching of vi.
We illustrate the matching process by using the example
instance given in Figure 3. Therefore, VSEQ = v1, v2, v3
and CSEQ = c1, c2, c3, c4, c5. The matching process for is
depicted in Figure 4(a), where each cell of the matrix M
represents the total matching cost. The matrix has 3+1=4
rows and 5+1=6 columns (an additional row and column
have been placed). The matrix is filled according to the
previous recurrence equation, by starting at the upper-left
cell and ending at the lower-right one. Initially we place a
zero in the first row and first column of the matrix. The
cost of the maximum matching is shown in the lower-right
cell, which contains the value 22.

0 0 0 0 0 0
0 9 9 9 9 9
0 9 10 10 14 14
0 0 10 10 15 22

 c1 c2 c3 c4 c5

v1
v2
v3

0 0 0 0 0 0
0 9 9 9 9 9
0 9 10 10 14 14
0 0 10 10 15 22

 c1 c2 c3 c4 c5

v1
v2
v3

(a) matching costs (b) matching path

 c1 c2 c3 c4 c5

 v1 __ __ v2 v3

(c) final assigment
Figure 4 The matching process

The best matching cost by itself does not give the
assignment of voices to clusters. To achieve this, the
matching path needs to be determined. We perform a
trace-back process starting at the cell which contains the
best matching value (i.e. cell with the value 22 in the
matrix). Based on the fact that the matching cost of v3 and
c5 is 8, the only possible predecessors are the top and
diagonal cells which contain the value 14. However, in the
trace-back process we never choose a vertical cell, since
no gaps are allowed to be placed on the cluster sequence,

meaning that all voices must be matched. The only
alternative left is to choose the diagonal cell. This means
that voice v3 will be matched to cluster c5. The current cell
is now (2,4) which contains the value 14. Again, since the
matching cost of v2 and c4 is 5, the only valid predecessor
is cell (1,3) which contains the value 9 (recall that we
never move vertically). Since we have chosen to move
diagonally, we match voice v2 to cluster c4. The next two
steps involve a horizontal movement, meaning that we
place two gaps in the voice sequence. These steps take us
to cell (1,1) from where we can only move diagonally to
cell (0,0). This diagonal movement implies an assignment
of voice v1 to cluster c1. The final assignment is given in
Figure 4(c), whereas the matching path is given in Figure
4(b), and is represented by the shaded cells.

According to the previous discussion, the running time
of the algorithm is O(n*m) (n>=2, m>=2) where n is the
number of voices and m the number of clusters. Evidently,
we need O(n*m) time to calculate all elements of the
matrix M, and O(n+m) time to reconstruct the matching
path. On the other hand, if an exhaustive algorithm is used
the number of all available crossing-free matchings that
can be produced are C(m,n), which are all possible
combinations of selecting n out of m items. For some
values of m and n, the exhaustive algorithm performs
better than dynamic programming. Therefore, according
to the current values of m and n we can decide whether to
use the exhaustive method or switch to dynamic
programming. However, even if in several cases the
exhaustive method performs better, counting all possible
matchings and selecting the best one may become tedious,
since we have to keep track of which matchings have been
examined and which have not. On the other hand,
dynamic programming offers a more clear framework and
determines the best matching in a more manageable and
systematic way.

V. EXPERIMENTS AND RESULTS

A. Test Data

The proposed algorithm has been tested on a small set
of musical works for piano. Four pieces with clearly
defined streams/voices are used as groundtruth for testing
the performance of the algorithm. The first two pieces are
two fugues from the first book of the Well-Tempered
Clavier by J.S.Bach (Fugue No.1 in C major, BWV846,
and Fugue No.14 in F# major, BWV859); these
polyphonic works consist of four independent voices. A
mazurka by F.Chopin (Mazurka, Op.7, No.5) consists of a
melody (upper staff) and accompanying harmony (lower
staff). Finally, the “Harmony Club Waltz” by S.Joplin has
two parallel homophonic streams (chordal ‘voices’) that
correspond to the two piano staves. See musical excerpts
in figures 5, 6, and 7.

In this pilot study, the aim was to examine whether a
single algorithm can be applied to two very different types
of music (i.e. pure polyphonic music and music containing
clear homophonic textures). All the parameters of the
algorithm are the same for all four pieces; the number of
streams/voices is determined automatically (not set
manually). It should be noted that for the two pieces by
Chopin and Joplin all other voice separation algorithms
would automatically determine at least four different

voices (up to eight voices) that do not have perceptual
validity (and musicologically are problematic).

Annotated datasets for musical streams/voices - as
voices are defined in this paper - do not exist. A small
dataset was therefore selected for which it is assumed that
musicologists/musical analysts would unreservedly agree
on the number of independent musical streams in each
piece.6 Working on a small dataset has enabled both
quantitative and qualitative evaluation of the results (all
the results have been analysed note-by-note and mistakes
have been categorised in types of problems – see section
5.2). A larger dataset, however, is currently assembled in
order to run larger scale tests.

At present, the algorithm has been applied to quantised
musical data (symbolic scores converted to MIDI).
Expressively performed musical data (e.g. expressive
MIDI) can be quantised (e.g., see Cambouropoulos 2000)
before being fed into the algorithm.

Figure 5 Four independent streams/voices are present in this excerpt
from the Fugue No.1 in C major, WTCI, BWV846 by J.S.Bach. The
algorithm performs voice separation correctly except for the last five
notes of the upper voice which are assigned to the second voice rather
than the first voice (as these are closer by a semitone to the last note of

the second voice).

Figure 6 Two independent streams/voices (melody and

accompaniment) are correctly determined by the algorithm in this
excerpt from the Mazurka, Op.7, No.5 by F.Chopin.

Figure 7 Two independent chordal streams/voices are correctly

determined by the algorithm in this excerpt from the “Harmony Club
Waltz” by S.Joplin; the only mistake is indicated by the circled note
which ‘erroneously’ is placed in the upper stream (because of pitch

proximity).

6 These independent ‘voices’ correspond to separate spines in the
kern format; all eight test pieces have been obtained from
KernScores <http://kern.humdrum.org>.

B. Quantitative Results

The evaluation metric used is the precision of the
obtained result. For the previously described musical
dataset, Table 1 shows the results. The effectiveness of the
proposed methodology is evident by the high precision
rates achieved for all eight pieces.

TABLE I.
RESULTS IN TERMS OF PRECISION FOR THE FOUR PIECES

Musical Work Precision
J.S.Bach, Fugue No.1 in C major, BWV846 92,38%
J.S.Bach, Fugue No.14 in F# major, BWV859 95,56%
F. Chopin, Mazurka, Op.7, No.5 100%
S.Joplin, “Harmony Club Waltz” 98.12%

Additionally, we have experimented with the impact

of the user-defined threshold value T on the precision of
the proposed algorithm. The experiment (Figure 8) refers
to the examination of the attained precision with respect to
the user-defined threshold T. The mazurka and waltz
datasets naturally exhibit increased synchronicity of notes,
thus lower values of T give high precision, while on the
contrary, the two fugues do not include notes that can be
merged into single sonorities and thus require higher
values of T.

0

10

20

30

40

50

60

70

80

90

100

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

user-defined threshold T

Pr
ec

is
io

n
%

Op.7, No.5
harmony
BWV846
BWV859

Figure 8 Precision vs. user-defined threshold T.

C. Qualitative Analysis

The aforementioned results were examined in detail in
order to understand the kinds of mistakes produced by the
algorithm. Most of these problems are, in a sense,
expected and cannot be solved merely when taking into
account only pitch and temporal distances between notes.

The majority of wrong results were given in cases
where the number of voices change and erroneous
connections are introduced due primarily to pitch
proximity (for instance, in Figure 5 the algorithm
erroneously ‘gives’ the last five notes of the upper voice to
the second voice simply because the first of these notes is
closer by a semitone to the last note of the second voice).
Kilian and Hoos (2002) address this same problem
claiming that, in essence, it is unsolvable at the note level
(‘It seems that when only considering the notes … there is
no reason why another separation should be preferred.’
p.45).

http://kern.humdrum.org>

A second kind of problem involves voice crossing.
Since voice crossing is disallowed by the algorithm notes
at points where voices cross (in the Bach fugues) are
assigned to wrong voices.

A third type of mistake relates to the breaking of
vertically merged notes into sub-sonorities and allocating
these to different voices; in this case the breaking point in
the sonority may be misplaced (see, for instance, circled
note in Figure 7).

The success rate (see previous section) of the
algorithm on this small but diverse dataset is remarkable.
It should be emphasised that the algorithm is capable of
detecting different number of voices in the same piece
automatically, not only in cases where a ‘monophonic’
voice may disappear for a while and reappear later on
(e.g., fugues), but also in cases where
polyphonic/homophonic textures change resulting in a
different number of multi-note voices (e.g., example in
Figure 9).

Figure 9 In the opening of the Mazurka, Op.7, No.5 by F.Chopin, the

algorithm detects correctly one voice (low octaves) and, then, switches
automatically to two voices (melody and accompaniment).

VI. CONCLUSIONS

In this paper the notions of voice and auditory stream
have been examined, and an attempt has been made to
clarify the various meanings. It is suggested that if ‘voice’
is understood as a musicological parallel to the concept of
auditory stream, then multi-note sonorities should be
allowed within individual ‘voices’.

It is proposed that a first step in voice separation is
identifying synchronous note sonorities and then breaking
these into sub-sonorities incorporated in horizontal
streams or ‘voices’. This proposal is in direct contrast with
most computational systems that start by finding first
horizontal ‘voices’ and then merging these into higher
level ‘voices’ (actually, the latter step has not been
implemented by any of the aforementioned computational
models).

The proposed voice separation algorithm incorporates
the two principles of temporal and pitch proximity, and
additionally, the Synchronous Note Principle and the
Tonal Fusion Principle. Allowing both horizontal and
vertical integration enables the algorithm to perform well
not only in polyphonic music that has a fixed number of
‘monophonic’ lines but in the general case where both
polyphonic and homophonic elements are mixed together.
We have shown in the above experiments that a single
algorithm, with the same parameters, can achieve very
good performance in diverse musical textures in terms
identifying perceptually pertinent voices/streams.

The pilot study reported in this paper gives promising
results in the domain of voice separation. Future work
involves testing the algorithm on a much larger database
and, also, incorporating additional principles such as the
Pitch Co-modulation Principle (notes that move in parallel
intervals, especially in octaves, are strongly integrated) .

REFERENCES
[1] Bregman, A (1990) Auditory Scene Analysis: The Perceptual

Organisation of Sound. The MIT Press, Cambridge (Ma).
[2] Cambouropoulos, E. (2006) ‘Voice’ Separation: theoretical,

perceptual and computational perspectives. In Proceedings of the
9th International Conference in Music Perception and Cognition
(ICMPC2006), 22-23 August, Bologna, Italy.

[3] Cambouropoulos, E. (2000) From MIDI to Traditional Musical
Notation. In Proceedings of the AAAI Workshop on Artificial
Intelligence and Music: Towards Formal Models of Composition,
Performance and Analysis, July 3 - Aug. 3, Austin Texas.

[4] Cormen, T., Leiserson, C.E., Rivest, R.L. and Stein, C (2001).
Introduction to Algorithms, The MIT Press.

[5] Chew, E. and Wu, X. (2004) Separating voices in polyphonic
music: A contig mapping approach. In Computer Music Modeling
and Retrieval: Second International Symposium (CMMR 2004),
pp. 1-20.

[6] Deutsch, D. (1999) Grouping Mechanisms in Music. In D.
Deutsch (ed.), The Psychology of Music (revised version).
Academic Press, San Diego.

[7] Huron, D. (2001) Tone and Voice: A Derivation of the Rules of
Voice-Leading from Perceptual Principles. Music Perception,
19(1):1-64.

[8] Kilian j. and Hoos H. (2002) Voice Separation: A Local
Optimisation Approach. In Proceedings of the Third International
Conference on Music Information Retrieval (ISMIR 2002),
pp.39-46.

[9] Kirlin, P.B. and Utgoff, P.E. (2005) VoiSe: Learning to Segregate
Voices in Explicit and Implicit Polyphony. In Proceedings of the
Sixth International Conference on Music Information Retrieval
(ISMIR 2005), Queen Mary, University of London (pp. 552-557).

[10] Madsen, S. T. and Widmer, G. (2006) Separating Voices in
MIDI. In Proceedings of the 9th International Conference in
Music Perception and Cognition (ICMPC2006), 22-26 August
2006, Bologna, Italy.

[11] Marsden, A. (1992) Modeling the Perception of Musical Voices:
a Case Study in Rule-based Systems. In Computer
Representations and Models in Music, Marsden, A. and Pople, A.
(eds), Academic Press, London.

[12] Temperley, D. (2001) The Cognition of Basic Musical Structures.
The MIT Press, Cambridge (Ma).

[13] Szeto, W.M. and Wong, M.H. (2003) A Stream Segregation
Algorithm for Polyphonic Music Databases. In Proceedings of
the Seventh International Database Engineering and Applications
Symposium (IDEAS’03).

